B.Tech. (Seventh Semester) Examination 2013
Advance Operating System (IT4101)

(Information Technology)

Model Answer

Section A

Q.1- (10x1=10)

1. 1s -1 command is used for :

a. Listof files c. Long list

b. List of log files d.Directories

Ans: C. Long list

2. “AWK” is derived from the initials of the language’s three developers: , , and
. (Fill in the blanks.)
Ans: Aho, Weinberger, Kernighan.

3. PWD in UNIX stands for

Ans: Present working directory.

4. Wc -1 command is used for :

a. Count word length c. Count characters

b. Count number of lines d. Count words

Ans: B. Count number of lines.
5. Pipe is a type of file.
Ans: Special file.

6. ifree algorithm is used for releasing disk blocks. [True / False]
Ans: False
7. The two addresses represent the u-area of two processes, but the Kernel access them via
the same address. [Fill in the blanks]
Ans: Physical, Virtual

8. The buffer pool follows the algorithm.
Ans: LRU



9. The Algorithm to free a disk block is:

c. free
d. delete

a. Ifree
b. Brelse

Ans: C. Free

10. The two types of operating systems for distributed system are and
Ans: Tightly coupled and loosely coupled

Q.2- (5x2=10)

1. What is the kernel of an operating system?
Ans: Proper definition of kernel
2. What is a shell in operating system?
ANS: Proper definition of Shell
3. Write the formula to compute the block number that contains the particular inode, also calculate byte offset.

ANS:

block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

4. What is the output of bmap algorithm?
ANS:

output: (1) block number in file system
(2) byte offset into block
(3) bytes of 1/0 in block
(4) read ahead block number

5. What are the different types of transparency in a distributed system?



ANS:

Kind Meaning
Location transparency The users cannot tell where resources are located
Migration transparency Resources can move at will without changing their names
Replication transparency The users cannot tell how many copies exist
Concurrency transparency Multiple users can share resources automatically
Parallelism transparency Activities can happen in parallel without users knowing

Fig. 1-13. Different kinds of transparency in a distributed system.

Section B

Note: Attempt any one question from each unit. Each question carries 8 marks.

UNIT 1

Q 1. Explain the use of array in AWK with proper example.
ANS: Write following points:

1.

2.
3.
4

About AWK

Declaration of Arrays in AWK
Use of Arrays in AWK
Example

Q 2. Describe standard I/0 and Pipe as the building block primitives of UNIX with examples.

ANS:

Page 3 of 21




As described earlier, the philosophy of the UNIX system is to provide operating
system primitives that enable users to write small, modular programs that can be
used as building blocks to build more complex programs. One such primitive
visible to shell users is the capability to redirect I/0. Processes conventionally have
access to three files: they read from their standard input file, write to their
standard output file, and write error messages to their standard error file.
Processes executing at a terminal typically use the terminal for these three files, but
each may be “redirected” independently. For instance, the command line

Is
lists all files in the current directory on the standard output, but the command line
Is > output

redirects the standard output to the file called “output” in the current directory,
using the creat system call mentioned above. Similarly, the command line

mail mjb < letter

opens the file “letter” for its standard intput and miails its contents to the user
named “mjb.” Processes can redirect input and output simultaneously, as in

nroff —mm < docl > docl.out 2> errors

where the text formatter nroff reads the input file docl, redirects its standard
output to the file docl.out, and redirects error messages to the file errors (the
notation “2>"’ means to redirect the output for file descriptor 2, conventionally the
standard error). The programs Is, mail, and nroff do not know what file their
standard input, standard output, or standard error will be; the shell recognizes the
symbols “<”, “>”, and “2>” and sets up the standard input, standard output,
and standard error appropriately before executing the processes.

The second building block primitive is the pipe, a mechanism that allows a
stream of data to be passed between reader and writer processes. Processes can
redirect their standard output to a pipe to be read by other processes that have
redirected their standard input to come from the pipe. The data that the first
processes write into the pipe is the input for the second processes. The second
processes could also redirect their output, and so on, depending on programming
need. Again, the processes need not know what type of file their standard output is;
they work regardless of whether their standard output is a regular file, a pipe, or a
device. When using the smaller programs as building blocks for a larger, more
complex program, the programmer uses the pipe primitive and redirection of 170 to
integrate the piece parts. Indeed, the system tacitly encourages such programming

style so that new programs can work with existing programs.

For example, the program grep searches a set of files (parameters to grep) for a
given pattern:

grep main a.c b.c c.c

searches the three files a.c, b.c, and c.c for lines containing the string “main” and
prints the lines that it finds onto standard output. Sample output may be:

a.c: main(argc, argv)
c.c: /* here is the main loop in the program */
c.c: main()

The program wc with the option —1 counts the number of lines in the standard
input file. The command line

grep main a.c b.c c.c| we —1

counts the number of lines in the files that contain the string “main”; the output
from grep is “piped” directly into the wc command. For the previous sample
output from grep, the output from the piped command is

3

The use of pipes frequently makes it unnecessary to create temporary files.



UNIT 2

Q 3. Write and explain the algorithm for allocation of incore inodes.

ANS:

The kernel identifies particular inodes by their file system and inode number and
allocates in-core inodes at the request of higher-level algorithms. The algorithm
iget allocates an in-core copy of an inode (Figure 4.3); it is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kernel maps the
device number and inode number into a hash queue and searches the queue for the
inode. If it cannot find the inode, it allocates one from the free list and locks it.
The kernel then prepares to read the disk copy of the newly accessed inode into the
in-core copy. It already knows the inode number and logical device and computes
the logical disk block that contains the inode according to how many disk inodes fit
into a disk block. The computation follows the formula

algorithm iget
input: file system inode number
output: locked inode

while (not done)
{ if (inode in inode cache)
{ if (inode locked)
{ sleep (event inode becomes unlocked);
continue; /* loop back to while */

/* special processing for mount points (Chapter 5) */
if (inode on inode free list)
remove from free list;
increment inode reference count;
return (inode);

)

/* inode not in inode cache */
if (no inodes on free list)
return(error);
remove new inode from free list;
reset inode number and file system;
remove inode from old hash queue, place on new one;
read inode from disk (algorithm bread);
initialize inode (e.g. reference count to 1);
return(inode);

Figure 4.3. Algorithm for Allocation of In-Core Inodes

Page 5 of 21



block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the inode list and that there are 8 inodes
per block, then inode number 8 is in disk block 2, and inode number 9 is in disk
block 3. If there are 16 inodes in a disk block, then inode numbers 8 and 9 are in
disk block 2, and inode number 17 is the first inode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

For example, if each disk inode occupies 64 bytes and there are 8 inodes per disk
block, then inode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core inode from the free list, places it on the correct hash queue,
and sets its in-core reference count to 1. It copies the file type, owner fields,
permission settings, link count, file size, and the table of contents from the disk
inode to the in-core inode, and returns a locked inode.

The kernel manipulates the inode lock and reference count independently. The
lock is set during execution of a system call to prevent other processes from
accessing the inode while it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system call: an inode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the inode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process closes a file.
The reference count thus remains set across multiple system calls. The lock is free
between system calls to allow processes to share simultaneous access to a file; the
reference count remains set between system calls to prevent the kernel from
reallocating an active in-core inode. Thus, the kernel can lock and unlock an
allocated inode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an inode from the
free list but finds the free list empty, it reports an error. This is different from the
philosophy the kernel follows for disk buffers, where a process sleeps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
execution of open and close system calls, and consequently the kernel cannot
guarantee when an inode will become available. Therefore, a process that goes to
sleep waiting for a free inode to become available may never wake up. Rather than
leave such a process “hanging,” the kernel fails the system call. However,
processes do not have such control over buffers: Because a process cannot keep a
buffer locked across system calls, the kernel can guarantee that a buffer will
become free soon, and a process therefore sleeps until one is available.

The preceding paragraphs cover the case where the kernel allocated an inode
that was not in the inode cache. If the inode is in the cache, the process (A) would
find it on its hash queue and check if the inode was currently locked by another
process (B). If the inode is locked, process A sleeps, setting a flag in the in-core
inode to indicate that it is waiting for the inode to become free. When process B
later unlocks the inode, it awakens all processes (including process A) waiting for
the inode to become free. When process A is finally able to use the inode, it locks
the inode so that other processes cannot allocate it. If the reference count was
previously O, the inode also appears on the free list, so the kernel removes it from

there: the inode is no longer free. The kernel increments the inode reference count
and returns a locked inode.

Page 6 of 21



Q 4. Write and explain the algorithm to release an incore inode.

ANS:

4.1.3 Releasing Inodes

When the kernel releases an inode (algorithm iput, Figure 4.4), it decrements its
in-core reference count. If the count drops to O, the kernel writes the inode to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the inode on the free list of inodes,
effectively caching the inode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and free the inode if the number of

links to the file is O.

{

?lgorithm iput /* release (put) access to in—core inode */
input: pointer to in—core inode
output: none

lock inode if not already locked;
decrement inode reference count;
if (reference count == 0)
{
if (inode link count == ()
{
free disk blocks for file (algorithm free, section 4.7);
set file type to 0;
} free inode (algorithm ifree, section 4.6);
if (file accessed or inode changed or file changed)
update disk inode;
put inode on free list;

release inode lock;

Figure 4.4. Releasing an Inode

Page 7 of 21




UNIT 3

Q5. How disk block addresses are managed in inode? If a process wants to access byte offset 992640124 in a file,
find out the desired block and byte offset in block for process.

ANS:

e T .

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a file to be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data belonging to
the file, but simple calculations show that a linear list of file blocks in the inode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10K bytes would require an index of 10 block numbers, but a file containing 100K
bytes would require an index of 100 block numbers. Either the size of the inode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the inode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the inode table of contents, but the principles are
independent of the number of entries. The blocks marked “direct” in the figure
contain the numbers of disk blocks that contain real data. The block marked
“single indirect” refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the appropriate direct block entry, and then read the direct block to find the data.
The block marked “double indirect” contains a list of indirect block numbers, and
the block marked “triple indirect” contains a list of double indirect block numbers.

In principle, the method could be extended to support “quadruple indirect
blocks,” “quintuple indirect blocks,” and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold up to 256 block numbers. The maximum number of bytes that could be
held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the inode.
Given that the file size field in the inode is 32 bits, the size of a file is effectively
limited to 4 gigabytes (2*2).

Processes access data in a file by byte offset. They work in terms of byte counts
and view a file as a stream of bytes starting at byte address 0 and going up to the
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logical block 0 and continues to a logical block number
corresponding to the file size. The kernel accesses the inode and converts the
logical file block into the appropriate disk block. Figure 4.8 gives the algorithm
bmap for converting a file byte offset into a physical disk block.

Consider the block layout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. If a process wants to access byte offset 9000, the kernel
calculates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte

10 direct blocks with 1K bytes each = 10K bytes
1 indirect block with 256 direct blocks = 256K bytes
1 double indirect block with 256 indirect blocks = 64M bytes
1 triple indirect block with 256 double indirect blocks =  16G bytes

Page 8 of 21



Inode

direct

Data
Blocks

0

direct 1

direct

direct

direct 5

direct 6

direct 7

direct 8

2  )
3 \
direct 4

direct 9

single

indirect

double

indirect

triple

indirect

Figure 4.6. Direct and Indirect Blocks in Inode

Solution of Problem:

Step 1: 992640124 — 10 x 1024
Step 2: 992629884 — 256x 1024
Step 3: 992367740 — 256x 256x 1024

= 992629884
= 992367740
= 925258876

Step 4: 925258876 — 256x 256x 256x 1024 = -16254610308

Step 5: 925258876 /(256x 256x 1024)

= 13.787

Step 6:925258876 — (13x 256x 256x 1024) = 52843644

Step 7: 52843644 / (256x 1024)

Step 8: 52843644 — (201x 256x 1024)
Step 9: 152700 / 1024

Step10: 152700 — 1024x 149

201.58

= 152700
= 149.121
= 124

Page 9 of 21

Direct Blocks

Single Indirect

Double Indirect

Triple Indirect

14™ Double Indirect Block

202" Single Indirect Block

150" direct block
Byte offset 124 in Block



SID

DID

TID

124
150 /

A 4

202

< 14

Q 6. Write and explain the algorithm for freeing of disk block with proper diagrams.

ANS:

The algorithms for assigning and freeing inodes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free resources,
block numbers, and inode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free inodes. There are three reasons for

the different treatment.

1

The kernel can determine whether an inode is free by inspection: If the file
type field is clear, the inode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is free
just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened to have that bit pattern.
Hence, the kernel requires an external method to identify free blocks, and
traditional implementations have used a linked list.

Disk blocks lend themselves to the use of linked lists: A disk block easily
holds large lists of free block numbers. But inodes have no convenient place
for bulk storage of large lists of free inode numbers.

Users tend to consume disk block resources more quickly than they consume
inodes, so the apparent lag in performance when searching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.

Page 10 of 21



super block list

109

L
Cog
211 [ 208

RSN . S0 ol 0 112

super block list

(a) Original configuration

109 | 949
]

109

211 (208

2050 202N It e A 112

(b) After freeing block number 949
super block list

]

109

211 {208

DOSTI2 02N NN, S AN e 112

(c) After assigning block number (949)

super block list

211 (208 205 {202 | -c-ccreecieeniiiienainnne. 112
]

211

344 (341 (338 (335 -oeeeeeieiieiiiiiiianens 243

(d) After assigning block number (109)

replenish super block free list

Figure 4.20. Requesting and Freeing Disk Blocks

UNIT 4

Q7. How the size of a process can be changed? Write and explain the algorithm to change the size of a process.

ANS:
Write following points

1. Whatis a size of process and how it can be changed

2. Write the algorithm to change the size of a process

3. Explain the algorithm with diagram

Page 11 of 21



Q 8. Write and explain the algorithm for steep Creation of a process.

ANS:

7.1 PROCESS CREATION

The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent

process, and the newly created process is called the child process. The syntax for
the fork system call is

pid = fork();

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system is booted, is the only process not created via fork.

The kernel does the following sequence of operations for fork.

1. It allocates a slot in the process table for the new process.
It assigns a unique ID number to the child process.

3. It makes a logical copy of the context of the parent process. Since certain
portions of a process, such as the text region, may be shared between
processes, the kernel can sometimes increment a region reference count
instead of copying the region to a new physical location in memory.

4. It increments file and inode table counters for files associated with the
process.

5. It returns the ID number of the child to the parent process, and a 0 value to
the child process.

The implementation of the fork system call is not trivial, because the child process
appears to start its execution sequence out of thin air. The algorithm for fork
varies slightly for demand paging and swapping systems; the ensuing discussion is

based on traditional swapping systems but will point out the places that change for
demand paging systems. It also assumes that the system has enough main memory
available to store the child process. Chapter 9 considers the case where not enough
memory is available for the child process, and it also describes the implementation
of fork on a paging system.

Figure 7.2 shows the algorithm for fork. The kernel first ascertains that it ha:s
available resources to complete the fork successfully. On a swapping system, it
needs space either in memory or on disk to hold the child process; on a paging
system, it has to allocate memory for auxiliary tables such as page tables. If the
resources are unavailable, the fork call fails. The kernel finds a slot in the process
table to start constructing the context of the child process and makes sure that.the
user doing the fork does not have too many processes already running. It also picks
a unique ID number for the new process, one greater than the most recently

assigned ID number. If another process already has the proposed ID number, the
kernel attempts to assign the next higher ID number. When the ID numbers reach
a maximum value, assignment starts from 0 again. Since most processes execute

for a short time, most ID numbers are not in use when ID assignment wraps
around.

Page 12 of 21



algorithm fork

input: none

output: to parent process, child PID number
to child process, 0

{

check for available kernel resources;
get free proc table slot, unique PID number;
check that user not running too many processes;
mark child state "being created;"
copy data from parent proc table slot to new child slot;
increment counts on current directory inode and changed root (if applicable);
increment open file counts in file table;
make copy of parent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;
dummy context contains data allowing child process
to recognize itself, and start running from here
when scheduled;
if (executing process is parent process)

change child state to "ready to run;"
return(child ID); /* from system to user */

else /* executing process is the child process */

initialize u area timing fields;
return(0); /* to user */

Figure 7.2. Algorithm for Fork

The kernel next initializes the child’s process table slot, copying various fields
from the parent slot. For instance, the child “inherits” the parent process real and
effective user ID numbers, the parent process group, and the parent nice value, used
for calculation of scheduling priority. Later sections discuss the meaning of these
fields. The kernel assigns the parent process ID field in the child slot, putting the
child in the process tree structure, and initializes various scheduling parameters,
such as the initial priority value, initial CPU usage, and other timing fields. The
initial state of the process is "being created” (recall Figure 6.1).

The kernel now adjusts reference counts for files with which the child process is
automatically associated. First, the child process resides in the current directory of
the parent process. The number of processes that currently access the directory
increases by 1 and, accordingly, the kernel increments its inode reference count.
Second, if the parent process or one of its ancestors had ever executed the chroot
system call to change its root, the child process inherits the changed root and
increments its inode reference count. Finally, the kernel searches the parent’s user
file descriptor table for open files known to the process and increments the global
file table reference count associated with each open file. Not only does the child
process inherit access rights to open files, but it also shares access to the files with
the parent process because both processes manipulate the same file table entries.
The effect of fork is similar to that of dup vis-a-vis open files: A new entry in the
user file descriptor table points to the entry in the global file table for the open file.
For dup, however, the entries in the user file descriptor table are in one process; for
fork, they are in different processes.

The kernel is now ready to create the user-level context of the child process. It
allocates memory for the child process u area, regions, and auxiliary page tables,
duplicates every region in the parent process using algorithm dupreg, and attaches
every region to the child process using algorithm attachreg. In a swapping system,



So far, the kernel has created the static portion of the child context; now it
creates the dynamic portion. The kernel copies the parent context layer 1,
containing the user saved register context and the kernel stack frame of the fork
system call. If the implementation is one where the kernel stack is part of the u
area, the kernel automatically creates the child kernel stack when it creates the
child u area. Otherwise, the parent process must copy its kernel stack to a private
area of memory associated with the child process. In either case, the kernel stacks
for the parent and child processes are identical. The kernel then creates a dummy
context layer (2) for the child process, containing the saved register context for
context layer (1). It sets the program counter and other registers in the saved
register context so that it can *“restore” the child context, even though it had never
executed before, and so that the child process can recognize itself as the child when
it runs. For instance, if the kernel code tests the value of register O to decide if the
process is the parent or the child, it writes the appropriate value in the child saved
register context in layer 1. The mechanism is similar to that discussed for a
context switch in the previous chapter.

When the child context is ready, the parent completes its part of fork by
changing the child state to “ready to run (in memory)” and by returning the child
process ID to the user. The kernel later schedules the child process for execution
via the normal scheduling algorithm, and the child process “completes™ its part of
the fork. The context of the child process was set up by the parent process; to the
kernel, the child process appears to have awakened after awaiting a resource. The
child process executes part of the code for the fork system call, according to the
program counter that the kernel restored from the saved register context in context
layer 2, and returns a 0 from the system call.

Parent Process

U Area

Per Process . File
Parent Region Table Open Files { Table
Data : "

Current Directory

~ Changed Root f e

Kernel Stack

Shared

Text
- Inode
. Table
U Area :: 3 5
.. Per Process . £
. -,chion Tablc Open Files -
o : Current Directory|-|
Data
Changed Root

Kernel Stack

Child Process

Figure 7.3. Fork Creating a New Process Context

Page 14 of 21



Figure 7.3 gives a logical view of the parent and child processes and their
relationship to other kernel data structures immediately after completion of the
fork system call. To summarize, both processes share files that the parent had
open at the time of the fork, and the file table reference count for those files is one
greater than it had been. Similarly, the child process has the same current
directory and changed root (if applicable) as the parent, and the inode reference
count of those directories is one greater than it had been. The processes have
identical copies of the text, data, and (user) stack regions; the region type and the
system implementation determine whether the processes can share a physical copy
of the text region.

UNIT 5

Q9. Explain workstation model of organizing distributed system. Also explain the use of idle workstations.
ANS:

4.2.1. The Workstation Model

The workstation model is straightforward: the system consists of work-
stations (high-end personal computers) scattered throughout a building or
campus and connected by a high-speed LAN, as shown in Fig. 4-10. Some of
the workstations may be in offices, and thus implicitly dedicated to a single user,
whereas others may be in public areas and have several different users during
the course of a day. In both cases, at any instant of time, a workstation either
has a single user logged into it, and thus has an “owner™ (however temporary),
or it is idle.

Idle workstation

&) & & 1)

Network

Fig. 4-10. A network of personal workstations, each with a local file system.

In some systems the workstations have local disks and in others they do not.
The latter are universally called diskless workstations, but the former are vari-
ously known as diskful workstations, or disky workstations, or even stranger
names. If the workstations are diskless, the file system must be implemented by
one or more remote file servers. Requests to read and write files are sent to a
file server, which performs the work and sends back the replies.

Diskless workstations are popular at universities and companies for several
reasons, not the least of which is price. Having a large number of workstations
equipped with small, slow disks is typically much more expensive than having

Page 15 of 21



one or two file servers equipped with huge, fast disks and accessed over the
LAN.

A second reason that diskless workstations are popular is their ease of
maintenance. When a new release of some program, say a compiler, comes out,
the system administrators can easily install it on a small number of file servers
in the machine room. Installing it on dozens or hundreds of machines all over a
building or campus is another matter entirely. Backup and hardware mainte-
nance is also simpler with one centrally located 5-gigabyte disk than with fifty
100-megabyte disks scattered over the building.

Another point against disks is that they have fans and make noise. Many
people find this noise objectionable and do not want it in their office.

Finally, diskless workstations provide symmetry and flexibility. A user can
walk up to any workstation in the system and log in. Since all his files are on
the file server, one diskless workstation is as good as another. In contrast, when
all the files are stored on local disks, using someone else’s workstation means
that you have easy access to his files, but getting to your own requires extra
effort, and is certainly different from using your own workstation,

When the workstations have private disks, these disks can be used in one of
at least four ways:

1. Paging and temporary files.

2. Paging, temporary files, and system binaries.

3. Paging, temporary files, system binaries, and file caching.
4. Complete local file system.

The first design is based on the observation that while it may be convenient to
keep all the user files on the central file servers (1o simplify backup and mainte-
nance, etc.) disks are also needed for paging (or swapping) and for temporary
files. In this model, the local disks are used only for paging and files that are
temporary, unshared, and can be discarded at the end of the login session. For
zxample, most compilers consist of multiple passes, each of which creates a
lemporary file read by the next pass. When the file has been read once, it is dis-
sarded. Local disks are ideal for storing such files.

The second model is a variant of the first one in which the local disks also
10ld the binary (executable) programs, such as the compilers, text editors, and
zlectronic mail handlers. When one of these programs is invoked, it is fetched
rom the local disk instead of from a file server, further reducing the network
oad. Since these programs rarely change, they can be installed on all the local
lisks and kept there for long periods of time. When a new release of some sys-
em program is available, it is essentially broadcast to all machines. However, if
hat machine happens to be down when the program is sent, it will miss the

Page 16 of 21



program and continue to run the old version. Thus some administration is
needed to keep track of who has which version of which program.

A third approach to using local disks is to use them as explicit caches (in
addition to using them for paging, temporaries, and binaries). In this mode of
operation, users can download files from the file servers to their own disks, read
and write them locally, and then upload the modified ones at the end of the login
session. The goal of this architecture is to keep long-term storage centralized,
but reduce network load by keeping files local while they are being used. A
disadvantage is keeping the caches consistent. What happens if two users down-
load the same file and then each modifies it in different ways? This problem is
not easy to solve, and we will discuss it in detail later in the book.

Fourth, each machine can have its own self-contained file system, with the
possibility of mounting or otherwise accessing other machines’ file systems.
The idea here is that each machine is basically self-contained and that contact
with the outside world is limited. This organization provides a uniform and
guaranteed response time for the user and puts little load on the network. The
disadvantage is that sharing is more difficult, and the resulting system is much
closer to a network operating system than to a true transparent distributed
operating system.

The one diskless and four diskful models we have discussed are summarized
in Fig. 4-11. The progression from top to bottom in the figure is from complete
dependence on the file servers to complete independence from them.

The advantages of the workstation model are manifold and clear. The
model is certainly easy to understand. Users have a fixed amount of dedicated
computing power, and thus guaranteed response time. Sophisticated graphics
programs can be very fast, since they can have direct access to the screen. Each
user has a large degree of autonomy and can allocate his workstation’s resources
as he sees fit. Local disks add to this independence, and make it possible to con-
tinue working to a lesser or greater degree even in the face of file server crashes.

However, the model also has two problems. First, as processor chips con-
tinue to get cheaper, it will soon become economically feasible to give each user
first 10 and later 100 CPUs. Having 100 workstations in your office makes it
hard to see out the window. Second, much of the time users are not using their
workstations, which are idle, while other users may need extra computing capa-
city and cannot get it. From a system-wide perspective, allocating resources in
such a way that some users have resources they do not need while other users
need these resources badly is inefficient.

The first problem can be addressed by making each workstation a personal
multiprocessor. For example, each window on the screen can have a dedicated
CPU to run its programs. Preliminary evidence from some early personal multi-
processors such as the DEC Firefly, suggest, however, that the mean number of
CPUs utilized is rarely more than one, since users rarely have more than one

Page 17 of 21



active process at once. Again, this is an inefficient use of resources, but as
CPUs get cheaper nd cheaper as the technology improves, wasting them will
become less of a sin.

4.2.2. Using Idle Workstations

The second problem, idle workstations, has been the subject of considerable
research, primarily because many universities have a substantial number of per-
sonal workstations, some of which are idle (an idle workstation is the devil’s
playground?). Measurements show that even at peak periods in the middle of
the day, often as many as 30 percent of the workstations are idle at any given
moment. In the evening, even more are idle. A variety of schemes have been
proposed for using idle or otherwise underutilized workstations (Litzkow et al.,

the user must tell which machine to use, puiting the full burden of keeping track
of idle machines on the user. Second, the program executes in the environment
of the remote machine, which is usually different from the local environment.
Finally, if someone should log into an idle machine on which a remote process is
running, the process continues to run and the newly logged-in user either has to
accept the lower performance or find another machine.

The research on idle workstations has centered on solving these problems.

The key issues are:

1. How is an idle workstation found?
2. How can a remote process be run transparently?
3. What happens if the machine’s owner comes back?

Let us consider these three issues, one at a time.

How is an idle workstation found? To start with, what is an idle worksta-
tion? At first glance, it might appear that a workstation with no one logged in at
the console is an idle workstation, but with modern computer systems things are
not always that simple. In many systems, even with no one logged in there may
be dozens of processes running, such as clock daemons, mail daemons, news

The algorithms used to locate idle workstations can be divided into two
categories: server driven and client driven. In the former, when a workstation
goes idle, and thus becomes a potential compute server, it announces its availa-
bility. It can do this by entering its name, network address, and properties in a
registry file (or data base), for example. Later, when a user wants (o execute a

An alternative way for the newly idle workstation to announce the fact that
it has become unemployed is to put a broadcast message onto the network. All

Page 18 of 21



Q 10. Describe how RPC is managed with threads in distributed operating system?

ANS:

4.1. THREADS

In most traditional operating systems, each process has an address space and
a single thread of control. In fact, that is almost the definition of a process.
Nevertheless, there are frequently situations in which it is desirable to have
multiple threads of control sharing one address space but running in quasi-
parallel, as though they were separate processes (except for the shared address
space). In this section we will discuss these situations and their implications.

4.1.1. Introduction to Threads

Consider, for example, a file server that occasionally has to block waiting
for the disk, If the server had multiple threads of control, a second thread could
run while the first one was sleeping. The net result would be a higher
throughput and better performance. It is not possible to achieve this goal by
creating two independent server processes because they must share a common
buffer cache, which requires them to be in the same address space. Thus a new
mechanism is needed, one that historically was not found in single-processor
operating systems,

Computer Computer
) I]‘
, \,
\/ / ll
Program

Process Thread counter

{al (k)

Fig. 4-1. (a) Three processes with one thread each. (b) One process with
three threads.

In Fig. 4-1(a) we see a machine with three processes. Each process has its
own program counter, its own stack, its own register set, and its own address
space. The processes have nothing to do with each other, except that they may
be able to communicate through the system’s interprocess communication primi-
tives, such as semaphores, monitors, or messages. In Fig. 4-1(b) we see another
machine, with one process. Only this process contains multiple threads of con-
trol, usually just called threads, or sometimes lightweight processes. In many
respects, threads are like little mini-processes. Each thread runs strictly sequen-
tially and has its own program counter and stack to keep track of where it is.
Threads share the CPU just as processes do: first one thread runs, then another
does (timesharing). Only on a multiprocessor do they actually run in parallel.
Threads can create child threads and can block waiting for system calls to com-
plete, just like regular processes. While one thread is blocked, another thread in

Page 19 of 21



Th_reads were invented to allow parallelism to be combined with sequential
f:xccutum_and blocking system calls. Consider our file server example again.
One possible organization is shown in Fig. 4-3(a). Here one thread, the

dispatcher, reads incoming requests for work from the system mailbox. After
examining the request, it chooses an idle (i.e., blocked) worker thread and
hands it the request, possibly by writing a pointer to the message into a special
word associated with each thread. The dispatcher then wakes up the sleeping
worker (e.g., by doing an UP on the semaphore on which it is sleeping).

File servar Dispatcher thread
process Waorker thread
rd
Shared 10
block N I
cache Ml

Request for -; .\ ——/7 —/? \

work arrives Mailbox Kermel

{al b) tel

Fig. 4-3. Three organizations of threads in a process. (a) Dispatcher/worker
maodel. (b) Team model. (c) Pipeline model.

When the worker wakes up, it checks to see if the request can be satistied
from the shared block cache, to which all threads have access. If not, it sends a
message Lo the disk to get the needed block (assuming it is a READ) and goes to
sleep awaiting completion of the disk operation. The scheduler will now be
invoked and another thread will be started, possibly the dispatcher, in order to
acquire more work, or possibly another worker that is now ready to run.

Threads can also be organized in the pipeline model of Fig. 4-3(c). In this
modcl, the first thread generates some data and passes them on to the next thread
for processing. The data continue from thread to thread, with processing going
on at each step. Although this is not appropriate for file servers, for other

problems, such as the producer-consumer, it may be a good choice. Pipelining
is widely used in many areas of computer systems, from the internal structure of
RISC CPUs to UNIX command lines.

Threads are frequently also useful for clients. For example, if a client wants
a file to be replicated on multiple servers, it can have one thread talk to cach
server. Another use for client threads is to handle signals, such as interrupts
from the keyboard (DEL or BREAK). Instead of letting the signal interrupt the
process, one thread is dedicated full time to waiting for signals. Normally, it is
blocked, but when a signal comes in, it wakes up and processes the signal. Thus
using threads can eliminate the need for user-level interrupts.

Page 20 of 21



4.1.5. Threads and RPC

It is common for distributed systems to use both RPC and threads. Since
threads were invented as a cheap alternative to standard (heavyweight)
processes, it is natural that researchers would take a closer look at RPC in this
context, to see if it could be made more lightweight as well. In this section we
will discuss some interesting work in this area.

Bershad et al. (1990) have observed that even in a distributed system, a sub-
stantial number of RPCs are to processes on the same machine as the caller
(e.g., to the window manager). Obviously, this result depends on the system, but
it is common enough to be worth considering. They have proposed a new
scheme that makes it possible for a thread in one process to call a thread in
another process on the same machine much more efficiently than the usual way.

The idea works like this. When a server thread, S, starts up, it exports its
interface by telling the kernel about it. The interface defines which procedures
are callable, what their parameters are, and so on. When a client thread C starts
up, it imports the interface from the kernel and is given a special identifier to use
for the call. The kernel now knows that C is going to call § later, and creates
special data structures to prepare for the call.

When a new message comes in to the server’s machine, the kernel creates a
new thread on-the-fly to service the request. Furthermore, it maps the message
into the server’s address space, and sets up the new thread’s stack to access the
message. This scheme is sometimes called implicit receive and it is in contrast
to a conventional thread making a system call to receive a message. The thread
that is created spontaneously to handle an incoming RPC is occasionally
referred to as a pop-up thread. The idea is illustrated in Fig. 4-9.

Incoming
mMEessage
is mapped When a message
into the arrives, a new
thread’s address thread is created
Thread space to handle it

Incoming message J

Fig. 4-9. Creating a thread when a message arrives.

Metwork

Page 21 of 21



